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About me  

• Bachelors degree: 
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• Project: 
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Camera of the CREAM (Cosmic Rays 
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About me  

• PhD/ Marie Curie Fellowship  

• Project: 
Effects of high luminosity collisions in the 
upgrades of the large hadron collider.  

• Academic Stays: 

7/7/2016 5 



About me  

• Postdoc  
University of Oxford, JAI 

• Project: 
Contribute to the design of the IR optics 
for the FCC-hh project. 
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The LHC has been providing hadron collisions since 2009 taking particle physics to a new 
era of Energy and Luminosity.  
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LHC Upgrade Program 

What are the next stages? 
 



7/7/2016 8 

 Increase Luminosity(5x1034 

cm-2s-1) in IP1 (ATLAS) and IP5 

(CMS)  

 

LHC Upgrade Program 



Energy 
Recover 
Linac 

The LHeC aims to 
implement a new ERL to 
circulate electrons and 

collide them with one of 
the proton beams of the 

LHC 

7/7/2016 9 

 Increase Luminosity(5x1034 

cm-2s-1) in IP1 (ATLAS) and IP5 

(CMS)  

 

LHC Upgrade Program 



LHC Upgrade Program 

The FCC-hh project aims 
to construct a new 100 km 
tunnel and use the LHC as 
injector to have pp 
collisions with a center-of-
mass energy up to 100 
TeV. 
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Effects of Fringe Fields 

Challenges in IR design 

Designing an interaction region is an important part of the design of any particle collider. 
Beams are  brought to a focus with small beam sizes and restrictions are given from both 

the accelerator and the detector. 
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Effects of Fringe Fields 

Established design 
High Beta functions in the IT  

Do fringe fields have a bigger effect? 
 

Challenges in IR designs 

Designing an interaction region is an important and challenging objective in the 
development of any particle collider. Beams are  brought to a focus with small beam sizes 

and restrictions are given from both the accelerator and the detector. 
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New design in an IR design for a different  
type of collisions and range of energy.  

Can we increase the luminosity? Reduce the SR? 
Chromaticity Correction? 
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New design in an IR design for a different  
type of collisions and range of energy.  

Can we increase the luminosity? Reduce the SR? 
Chromaticity Correction? 

Effects of Fringe Fields 

Established design 
High Beta functions in the IT  

Do fringe fields have a bigger effect? 
 

Challenges in IR designs 

Designing an interaction region is an important and challenging objective in the 
development of any particle collider. Beams are  brought to a focus with small beam sizes 

and restrictions are given from both the accelerator and the detector. 

Flexibility in a design, find the best option. 
Unprecedented energies  
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General design of the IR in the LHC consist of 26 quadrupoles and 2 
separation/recombination dipoles.  
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Interaction Region 
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General design of the IR in the LHC consist of 26 quadrupoles and 2 
separation/recombination dipoles.  
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General design of the IR in the LHC consist of 26 quadrupoles and 2 
separation/recombination dipoles.  

Luminosity inversely 
proportional to the size of 

the beam of the interaction 
point. 
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Interaction Region 



FOCUSING. QUADRUPOLES. Implementation of new inner 
triplet Q1-Q3 
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Luminosity inversely 
proportional to the size of 

the beam of the interaction 
point. 

IR Layout 
General design of the IR in the LHC consist of 26 quadrupoles and 2 

separation/recombination dipoles.  
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Increasing Luminosity 
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Luminosity inversely 
proportional to the size of 

the beam of the interaction 
point. 

IR Layout 
General design of the IR in the LHC consist of 26 quadrupoles and 2 

separation/recombination dipoles.  

SEVERE LIMITATIONS 
1. Quadrupole apertures 
2. Quadrupole strengths 

3. Efficiency of the chromatic correction 
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Increasing Luminosity 



  
IR5 IR4  IR6 arc  arc  IR5 

Increases Beta function in 
location of sextupoles in arc  

 *=0.55 m  0.15 m 
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Achromatic Telescopic Squeezing Scheme (ATS) 

HL-LHC 
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Integration of  Fringe Fields 

• Previous studies have not taken into account the fringe fields. In 
particular dynamic aperture studies have been done with a thin 
version of the lattice.  

• New quadrupoles have higher gradients and higher apertures. 
Fringe fields effects are expected to be more significant.  

 

Challenges 
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Integration of  Fringe Fields 

Fringe Field Studies: 
 

1. Model Fringe Fields. 
 

2. Obtain Transfer Maps 
 

3. Implement fringe field element 
using SAMM code  
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Integration of  Fringe Fields 

Fringe Field Studies: 
 

1. Model Fringe Fields. 
 

2. Obtain Transfer Maps 
 

3. Implement fringe field element 
using SAMM code  
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Integration of  Fringe Fields 

Measure effects of fringe fields via Frequency Map Analysis (FMA): Studying variation of the 
tunes over a certain number of turns.  
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Integration of  Fringe Fields 

Measure effects of fringe fields via Frequency Map Analysis (FMA): Studying variation of the 
tunes over a certain number of turns.  

 

Results of fringe fields: change in dynamics for particles with large dynamic aperture, but 
no reduction in dynamic aperture (stable zone). 

 



IR Layout 
Focus one of the proton beams and collide it with the electron beam while the other 

proton beam bypasses the interaction.  
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LHeC IR  

Non-focused proton beam through free field aperture of (new) inner triplet. 
Focus proton beam 2  minimize β* (current value in IR2 10 m) 



IR Layout 
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7/7/2016 27 

LHeC IR  

Non-focused proton beam through free field aperture of (new) inner triplet. 
Focus proton beam 2  minimize β* (current value in IR2 10 m) 



FOCUSING. QUADRUPOLES. Implementation of new inner 
triplet Q1-Q3 
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IR Layout 
General design of the IR in the LHC consist of 26 quadrupoles and 2 

separation/recombination dipoles.  

SEVERE LIMITATIONS 
1. Quadrupole apertures 
2. Quadrupole strengths 

3. Efficiency of the chromatic correction 
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LHeC IR 
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LHeC IR 



HL-LHC 

IP1/IP5 
β*=15 cm 
 
 

IP2 
β*=10 m 
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Achromatic Telescopic Squeezing Scheme (ATS) 

HL-LHC+LHeC 



HL-LHC HL-LHC + LHeC 

IP1/IP5 
β*=15 cm 
 
 

IP2 
β*=10 cm 

IP1/IP5 
β*=15 cm 
 
 

IP2 
β*=10 m 
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Achromatic Telescopic Squeezing Scheme (ATS) 

HL-LHC+LHeC 



Flexibility Design 

Disadvantages Advantages Cases found 

Minimize 

β*  

Increase 

Chromatic 

Aberrations 

Increase 

Luminosity 

Increase 

L* 

Increase 

Chromatic 

Aberrations 

 

Minimize 

Synchrotron 

Radiation 

 

β*=5-10, 20 cm 
With L* fixed at 10 

m  

L*=10-20 m 
With β* fixed at 10 

cm  

                           Find the right balance between competing criteria. Where is the 
compromise? 

 
Further studies, chromatic correction, synchrotron radiation,  tracking studies.  
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Flexibility of  the Design 

Challenges 
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Results in LHeC 

 

• Optical Designs. 

 

• Chromatic Correction 

 

• Require nominal Luminosity 

 

• Tracking studies 

 

• SR and magnet design 

 

 

 

L* = 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 

β*= 5, 6, 7, 8, 9, 10, 20 
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FCC IR 

Choose parameters: 
Options L*= 36, 45 and 61 m. L*= 45 good compromise between 

detector requirements and keeping inner triplet “short”. 
Options β*= 1,1 m (Baseline –not an issue), 0.3 m (Ultimate, 

reachable), 0.05 m limited by beam stay clear limitations. 
 

Radiation load in the quadrupoles is the main driver. Shielding 
required inside the quadrupole reduces β* reach.  7/7/2016 39 
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FCC Correction Scheme 

Objectives of the correct Scheme:  
Control possible misalignments of the quadruples, field/tilt errors of the interaction 

region (in particular the IT, D1 and D2) while maintaining the crossing angle. 

H/V H/V H/V H/V H/V H/V 



The ideal corrected orbit would restore the original orbit in the presence of alignment 
errors by adjusting the strength of the correctors.  

FCC Correction Scheme 

No errors Added IT errors Correction 
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The ideal corrected orbit would restore the original orbit in the presence of alignment 
errors by adjusting the strength of the correctors.  

FCC Correction Scheme 

No errors Added IT errors Correction 

1. Calculate maximum orbit deviation in IR after 
correction. 

2. Repeat for 500 seeds 
3. Calculate value of the maximum orbit deviation 
      for which 90% of the seeds are included (x90) 
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Conclusions 

• Designing an interaction region is an important 
objective of any new accelerator and often 
compromises must be made.  

• The upgrades of the large hadron collider comes with 
further challenges, mainly driven by the 
unprecedented ranges of energy and luminosity.  

- Fringe Fields in the HL-LHC. 
- LHeC IR accomodated in previous IR2. 
- Correction Scheme for FCC. 
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Thank you! 

e.cruz-alaniz@liverpool.ac.uk 


