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Overview

* Continuous FSI
— Motivation.
— Frequency Scanning Interferometry (FSI).
— Moving targets / Dynamic FSI.
— Continuous FSI (CFSI).
— Enhanced CFSI.
— Summary.

* Single-shot Smith-Purcell monitor
— Motivation
— Smith-Purcell radiation
— Current system (FACET, SLAC)

— Single-shot proposal
Grating layout
Background reduction

— Summary
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e Absolute distance measurement.

John Adams Institute
for Accelerator Science

* Contactless.
e High accuracy, high precision.
* Easily scalable.

* Many applications in HEP:
— ATLAS.
— LiCAS / Monalisa. :

Picture courtesy J. Dale

— Undulator gap measurement.
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Moving targets

* Dynamic FSI:
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[1] J. Dale et. al., "Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using
frequency scanning interferometry and gas absorption cells," Opt. Express 22, 24869-24893 (2014)
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Continuous FSI ysics

What is needed for length calculation?

— Measurement point

* Known laser frequency

b1 h1b2 h2 b3 h3b4 h4 b5 h5 b6

* Known phase 1570

— Transfer point
* Known length
* Known laser frequency
*  Known phase

Dynamic FSI essentially finds length.

— Process requires two lasers.

Laser Wavelength / nm

Once found, only one laser is required!

— First laser can continue to scan, and so measure.  ° 1 2 3 4

— Second laser restarts.

— Second laser frequency determined.

— Length from first laser provides transfer point for second.
— Handover.

— First laser resets etc.
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Vibration experiments
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Enhanced CFSI
. . SOOOT T T T I__ mm'st
e Solution: add a fixed-frequency laser! M )
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Turnoff experiments

for Accelerator Science
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Summary

* (Enhanced) Continuous FSI demonstrated as a feasible technique.
— Measurements of vibration and stage motion compared against reference system.
— Handovers to fixed frequency laser demonstrated.
— Scanning lasers removed from measurement interferometer without disruption.

* Several developments required:
— Investigation into drift discrepancy.

— Accuracy improvements.
— Analysis speed increase.

We acknowledge support via STFC CASE studentship ST/I000526/1
and EPSRC grant EP/H018220/1, both in conjunction with NPL.
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* Continuous FSI
— Motivation.
— Frequency Scanning Interferometry (FSI).
— Moving targets / Dynamic FSI.
— Continuous FSI (CFSI).
— Enhanced CFSI.

— Summary.

* Single-shot Smith-Purcell monitor
— Motivation
— Smith-Purcell radiation
— Current system (FACET, SLAC)

— Single-shot proposal
Grating layout
Background reduction

— Summary
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 Many applications require (or provide) short bunch lengths:

— Particle colliders.

Motivation

— Plasma wakefield acceleration.
— Free-electron lasers.

* Bunch profile can vary on a shot-by-shot basis.
 Complex interactions can be difficult to model.
* Better to simply measure the beam!

— Needs to be non-destructive.

19/05/2016 How far, how fast, and what shape? 13



Smith-Purcell (P
Radiation

ysics.,

Charged particle bunch

Surface charge

e Charged particle bunch passes above a metal grating.

e Asurface current is induced.

* The grating forces changes in current direction — leads to emission of radiation.
* Length profile of the bunch encoded within the SPR intensity distribution.
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Current system

\ ' |

"

* Experiments performed at FACET [2].
=20 GeV electrons.

* 0.5-2.0x10%electrons per bunch.

* Normalized emittance 60 mm-mrad.
* Bunches at 10 Hz.

* Measurement of sub-ps bunch profiles.
* SPR properties also studied.

current (arb.units)

[2] H.L. Andrews et. al., “Reconstruction of the time profile of
20.35 GeV, subpicosecond long electron bunches by means
of coherent Smith-Purcell radiation,” Phys. Rev. ST Accel.
Beams, 17, 052802, 2014.
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Schematic layout
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Limitations psies:

Particle

bearn * High background, low signal.
— Requires significant averaging.
%, )
%,}%qh * Requires 6 sets of measurements:
) Y
) \‘ — Three different gratings on carousel.
\ — One “blank” measurement for each.
\ | * Mechanically complex:
| 1 — Carousel rotation.
I 1 — Carousel translation.
| — Changing filters.
"  Components must be A-independent.
/  Geometry changes required.
\acuum '
chamber

Y
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3D geometry

(77
17

A

=460 mm length
(before the vacuum chamber) 't
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~3000 mm length JL
(before the vacuum chamber) s
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Low signal-to-noise ratio expected.

Current system uses blank measurements.

New system would require 3 blanks.

Proposed solution — polarization.

Preliminary results show SPR polarized (SLAC).
* Repeat measurements at LUCX (KEK).

Provides background estimate.

Incoming
radiation

Extra detection system for each.
Different environment to grating.

Increases system length.

Difficult for a single shot system.

Lead shielding

Seen in both simulation and experiment.
Background unpolarized (at FACET).

Window

WIngnnm Flter

Background signal

(Pxford
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Mirrar

Winston
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.
~
b Detector

Winston
Cone

\/

Detector
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=1750 mm length %’
(before the vacuum chamber)
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=620 mm length
(before the vacuum chamber)
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Tilted layout

=620 mm length L
(before the vacuum chamber) :
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“Final” geometry
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Summary

e Qutline of a single-shot SPR beam profile monitor.
* Revision of almost all subsystems of the current experiment.
* Aim to have a conceptual design by January 2017.

This work was supported (in parts) by the: UK Science and Technology Facilities
Council (STFC UK) through grant ST/M003590/1 and The Leverhulme Trust through
the International Network Grant (IN — 2015 — 012). F. Bakkali Taheri would like to
thank STFC UK and H. Harrison to thank STFC UK and JAI University of Oxford for
supporting their DPhil projects.

3D diagrams produced using CST Studio Suite 2015.
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Any questions?
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Backup slides

19/05/2016 How far, how fast, and what shape? 27



/ (Pxford
John Adam / r( r
for Acceler ° .
hysics.

Continuous FSI

1 _
Liave = ol (2 Agifp + vl M) Lo }ilp_é@z — Aol
1 S 21 J
Ly = Ao, L "t — et
M Vi (27'(' Oi + 4 tM) ( i )
il = ((2 . )(¢le—¢pﬂ|R)) + [ is00 S b1 h1b2 h2 b3 h3b4 h4 bS5 h5b6

Vil = ((2 7 ) (iR — Of3. R)) + Vg3

After setup only one laser required.
Shift the scanning pattern.

Laser Wavelength / nm

No time with no laser present.
Handover after a laser restarts.

No measurement interruptions. .
Same time resolution as dynamic FSI. Time /s
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Absolute Measurement
Calibration consistency
_6 -
0.8x10 3% 10 °
—~Calibration values . Calibration 1
-1t —Weighted mean - Calibration 2
—10 uncertainties of the mean - Calibration 3
‘l‘ -1.2 T £25 Cal!brat!on 4
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8-16 A\ 3 2
§ - f . e
©-1.8 3
2 [
S 5 L 015
-2.2
-2 40 1 2 3 6 7 8 5.5 3 3.5 4 4.5 5 55 6

4
Calibration CFSI measurement / m
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Continuous FSI

Motion experiments

Experiment 4 —Stationary period

0.1 -6
ox 10 —Moving period
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— Optical connection
= Electrical connection
-==+ Control connection

Computer

RS 232! tiusB 2.0
11

¥ x2
Laser 2
Sync out
A

Master splitter box

a9%
| 1%
i 3J6
| 50% 50%
Front end
splitter tree
>
H 4 g
Reference Measurement g
Interferometer || Interferometer ]
Optics Optics &
Photodiode
board

Gas cell measurement system

i| Laser2 Laser 1 Laser 2 Laser 1
Il Cell Power Power Cell
| |Photodiode Photodiode| |Photodiode Photodiode

=
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Enhanced CFSI

Motion experiments
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Magnet tilt P

MNominal gap Smm Back collimator residuals
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Grating development

How many gratings do we need?
Grating size?
Grating shape?

Distance from the beam?
How good is our surface-current model?

Image Charge on Grating

Effect of Beam-Grating Separation on Energy

3mm 5mm

I 2mm

of Electrons

Direction

Z(m) -

Y(m) - Grating Width ‘Wavelength (;nm)

Simulation work by H. Harrison
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Filters

osf . ==t
o3f i == BN
off i =
1 . %10 5
osf i a4 Q
g 1. . . x10™ 8
gost i == %
E 1.5 2 25 Xmﬂa UQ
_ _ osf i w4 2
 Use waveguide array plate filters (WAPs). : « | =
— Well understood (e.g. Winnewisser [3]). L ¥ el ,i:
— Predictable geometry defined pass-band limits. of e m
— Polarization independent. 11'5 2 2:5 o
. . . o . °8+ fj s |[—I=2.6d \rl_'] v
* Simulations in CST Microwave studio :
— Angular dependence. 5L I/ W= ERN

— Depth studies etc.

[3] C. Winnewisser, F. Lewen and H. Helm, “Transmission

° N ot eXpeCti ng to Cha nge fl |te r Styl e characteristics of dichroic filters measured by THz time-domain
’ spectroscopy,” Appl. Phys. A, 66, 593-598, 1998.
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Proposed update

e Larger filters.
0 e Square layout.
T_ﬁ * Add adjustable masks.
— Similar slit used at SLAC.
 Two main benefits:

— Selection of angular acceptance.
— Allows study of SPR distribution.

 Adds mechanical complexity.
 “Wish list” feature.

— Nice but not essential.
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Winston cones

Non-imaging concentrators [4].
Wavelength independent.

— Important for multi-grating system.
— Not necessary for single-shot layout.

Looking at horn antennae.

— Waveguide coupled collection.

Two benefits:
— Transmission away from accelerator.

— Possibility of additional filtering.

[4] A. Rabl and R. Winston, "Ideal concentrators for finite sources
and restricted exit angles," Appl. Opt. 15, 2880-2883, 1976.
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