
  

B2
Symmetry and Relativity

Lecture 18



  

Closer look at collisions

● What’s going on during a collision?

In collision problems, we’ve mostly 
concerned ourselves with the 
before and after, ignoring what 
goes on in between



  

Closer look at collisions

● What’s going on during a collision?

Do the particles come into contact with 
one another?

(Classical physics likes particles which 
are point-like, or hard objects)



  

Closer look at collisions

● Particles exert force on one another
(no need for actual contact)

Whoops – forces need to signal from 
one particle to the other

There’s a maximum speed!



  

Closer look at collisions

● Particles exert force on one another
(no need for actual contact)

Better



  

Closer look at collisions

● Individual “signal”
(like particle decays and formations)

We can conserve 4-momentum and 
satisfy relativistic symmetries with each 
signal

But each signal must carry momentum!

(Note:  haven’t identified signal as 
electromagnetic)



  

Closer look at collisions

● Force as flow of signals

Flow is defined at all 
space-time points
→ fields

It must also propagate 
in space-time
→ field currents

Momentum flow



  

Fields

● Individual current conservation:

● 4-momentum conservation (no external forces):

➔ We need 4 currents with continuity equations:
stress-energy tensor

This has to be a rank-2 field tensor 
so the 4 currents form a 4-vector

4 equations!



  

Fields

● Special Relativity requires forces to be treated as fields
– Field needs to propagate:  radiation
– Also must carry momentum

● Add quantum mechanics:
– Particles have a width

● overlap not a problem
– Fields propagate like particles

● Interesting details here...
– Side note:  how many exchanged?

● good thing they’re bosons



  

Fields
● Calculating amplitudes in B4:

● Looks very classical – don’t be fooled!
– Lines represent quantum fields
– Quantum theory shares symmetries, e.g., form 

invariance,
because what else can it do?

Don’t worry about angle here.
A Feynman diagram is not
a space-time diagram.



  

Emmy Noether (1882-1935)

● Wide-ranging mathematician at 
Göttingen

● “Guest lectured” for David Hilbert 
and others

● Ended up by Bryn Mawr
● Most famous for Noether’s 

Theorem connecting symmetries 
and conservation laws



  

Noether’s Theorem
● Noether’s Theorem in brief:  a continuous symmetry → a conserved current

– We’re going to talk about Noether’s Theorem for fields
– It’s actually a bit easier than the usual one for discrete particles

● Some definitions we’ll use:
– Path:  a field configuration {φi(x)}
– Classical path:  a stationary path with respect to the action

(which is a functional of the fields)
– Action invariance:  the new action has the same classical path
– Symmetry:  a change in the path which leaves the action invariant

(same classical path)
● Basic idea:  two kinds of symmetry in the action

– General invariance:  a change from any path which leaves the action invariant
● No requirement that the original path is stationary/classical

– Invariance of action around classical path itself
● Noether relates the two

NON-SYLLABUS



  

Noether’s Theorem

● Simplest case:  cyclic field
– Lagrangian doesn’t depend on the field explicitly

This is the form of a 
conserved current 
(doesn’t have to be 
electric charge)

NON-SYLLABUS



  

General invariance

● The action is a functional of the fields

● First step:  keep the action identically the same at all points

– The action clearly has the same extrema
– Note also this is true for cyclic fields

A function of x, added to the original field
(not necessarily a small change)

Consider just one 
field for simplicity

NON-SYLLABUS



  

General invariance

● But remember that action is an integral

● Adding a divergence term only affects the surface – not the 
interior, where the action is varied to find a stationary configuration

Analogous to 3D

NON-SYLLABUS



  

Variation around classical path
● Now consider a classical field configuration

● Small variation around that configuration

=0 because it’s the classical path

Another divergence!

NON-SYLLABUS



  

Relating the two
● If the variation around the classical path is a symmetry 

(leaves the action invariant), then it can take the form of a 
general invariance as well

Assign

Classical path

From general invariance –
any other sort of invariance Change close to classical path

NON-SYLLABUS



  

Noether’s Theorem

● Gather both divergences → conserved current

● Now let’s look at the EM field

NON-SYLLABUS

Note:  for cyclic 
coordinate Kμ=0 
(reduces to 
previous result)



  

Maxwell stress-energy tensor

● Where did this come from?

● In lectures, we do this:

– Defence: there aren’t that many rank-2 
symmetric tensors we can make out of the fields

● We will see it’s a conserved Noether current 



  

Maxwell field tensor

● Field Lagrangian, no sources

● Translation:

● Noether current:

(For normal Lagrangians, 
translational invariance results 
in momentum conservation)

Plug into field Euler-
Lagrange equations
to get source-free  
Maxwell equations



  

Field shift

● Problem:  not gauge invariant
– We can press on, but then we’ll have to “fix” later on
– Simpler approach here:  gauge transformation

– Now field shift is manifestly gauge invariant



  

Field tensor shift
● We shift field values rather than the fields 

themselves

Bianchi identity



  

General invariance

● Calculate the change in action

● Surface term (divergence):



  

On-shell variation



  

Conserved current

Gather free parameters ε

The stress-energy tensor!



  

Summary

● Recall:  particle interactions need 
a field tensor

● Translational symmetry → 
momentum conservation

● Applied to fields, this gives us 
stress-energy tensor
– The complicated form didn’t pop up 

out of nowhere
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