B2
 Symmetry and Relativity
 Lecture 22

Caltech exams

- Always "take home", usually "open book"
- Professor hands out the exam paper with due date
- Also gives instructions on what resources allowed, e.g., textbook, lecture notes, written work
- No one allowed to watch
- Students decided when/where to sit exam
- Responsible for timing themselves, marking "overtime" sections honestly

Caltech exams

- Typical instruction (Phys 1 quizzes):

Time: 1 hour
You can use your lecture notes, your homework, Ohanian and Feynman

Liénard-Wiechert potentials

- Field of a moving charge:
- Expect it to depend on charge, speed, distance from source
- Form-invariant combination which matches known behaviors (charge at rest, uniform motion)

$$
A^{\mu}=\frac{q}{4 \pi \epsilon_{0}} \frac{U^{\mu} / c}{\left(-R_{\mathrm{sf}}^{\nu} U_{\nu}\right)}
$$

$$
R_{\mathrm{sf}}^{\nu} \equiv R^{\nu}-R_{s}^{\nu}
$$

Liénard-Wiechert potentials

- Generalization to a 4-current field

$$
A^{\mu}(t, \mathbf{x})=\frac{1}{4 \pi \epsilon_{0} c^{2}} \int \underbrace{\frac{d \mathbf{x}_{s}}{r_{\mathrm{sf}}} J^{\mu}\left(t-r_{\mathrm{sf}} / c, \mathbf{x}_{s}\right) \quad r_{\mathrm{sf}} \equiv\left|\mathbf{x}-\mathbf{x}_{s}\right|}_{\text {(scalar invariant) }}
$$

- Anyone want to guess the form for gravitational radiation?
- Einstein field equation $R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=-\frac{8 \pi G}{c^{4}} T_{\mu \nu}$ Curvature (Ricci) tensor and scalar

Liénard-Wiechert potentials

- If you guessed (within factors)

Linearized metric perturbation

$$
h^{\mu \nu}(t, \mathbf{x})=\frac{4 G}{c^{4}} \int \frac{d \mathbf{x}_{s}}{r_{\mathrm{sf}}} T^{\mu \nu}\left(t-r_{\mathrm{sf}} / c, \mathbf{x}_{s}\right)
$$

you'd be right

- One might ask, how could you be wrong?
- Congratulations: you've mastered the art of the symmetry-informed guess

In the wild

de Donder gauge, Fock gauge, or Lorentz gauge[17]; in particular, the latter name refers to the analogy with the correspondent condition used in electromagnetism (see below). Then, from (2) we get

$$
\begin{equation*}
\square \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu} \tag{4}
\end{equation*}
$$

Notice that the condition (3) can be always achieved by a gauge transformation; in fact, Einstein equations are invariant with respect to the infinitesimal transformations

$$
\begin{equation*}
h_{\mu \nu} \rightarrow h_{\mu \nu}+\xi_{\mu, \nu}+\xi_{\nu, \mu} \tag{5}
\end{equation*}
$$

which, in terms of $\bar{h}_{\mu \nu}$ becomes

$$
\begin{equation*}
\bar{h}_{\mu \nu} \rightarrow \bar{h}_{\mu \nu}+\xi_{\mu, \nu}+\xi_{\nu, \mu}-\eta_{\mu \nu} \xi_{, \alpha}^{\alpha} \tag{6}
\end{equation*}
$$

So, if $\bar{h}^{\mu \nu}{ }_{, \nu} \neq 0$, it is sufficient to choose ξ^{μ} to be a solution of $\square \xi^{\mu}=-\bar{h}^{\mu \nu}{ }_{\nu}$.

Eqs. (4) are in clear analogy with Maxwell equations for the electromagnetic four-potential: so, they can be solved in the same way (see e.g. Ruggiero and Tartaglia [2], Mashhoon [3], Mashhoon et al. [18], Mashhoon [19], Padmanabhan [20]). In fact, neglecting the solution of the homogeneous wave equations associated to (4), the general solution is given in terms of retarded potentials

$$
\begin{equation*}
\bar{h}_{\mu \nu}=\frac{4 G}{c^{4}} \int_{V} \frac{T_{\mu \nu}\left(c t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right|, \mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathrm{d}^{3} x^{\prime} \tag{7}
\end{equation*}
$$

where integration is extended to the volume V, containing the source. We may set $T^{00}=\rho c^{2}$ and $T^{0 i}=c j^{i}$, in

In analogy with the corresponding solutions of electromagnetism, it is possible to introduce the gravitoelectromagnetic potentials: namely, the gravitoelectric Φ and gravitomagnetic A^{i} potentials are defined by

$$
\begin{equation*}
\bar{h}_{00} \doteq 4 \frac{\Phi}{c^{2}}, \quad \bar{h}_{0 i}=-2 \frac{A_{i}}{c^{2}}, \tag{11}
\end{equation*}
$$

which, taking into account Eqs. (9) and (10), take the form

$$
\begin{equation*}
\Phi=G \int_{V} \frac{\rho\left(c t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right|, \mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathrm{d}^{3} x^{\prime} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
A_{i}=\frac{2 G}{c} \int_{V} \frac{j^{i}\left(c t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right|, \mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathrm{d}^{3} x^{\prime} \tag{13}
\end{equation*}
$$

Eventually, the spacetime metric describing the solutions of Einstein's equation in weak-field approximation is written in the form $[2,3]$

$$
\begin{equation*}
\mathrm{d} s^{2}=-c^{2}\left(1-2 \frac{\Phi}{c^{2}}\right) \mathrm{d} t^{2}-\frac{4}{c} A_{i} \mathrm{~d} x^{i} \mathrm{~d} t+\left(1+2 \frac{\Phi}{c^{2}}\right) \delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j} \tag{14}
\end{equation*}
$$

Now that we have defined the gravitoelectromagnetic potentials, it is possible to reconsider the Hilbert gauge condition (3) and express it in terms of Φ and A^{i}. From (3) we obtain indeed two conditions: setting $\mu=0$ we get

$$
\begin{equation*}
\bar{h}_{, 0}^{00}+\bar{h}_{, i}^{0 i}=0 \rightarrow \frac{1}{c} \frac{\partial \Phi}{\partial t}+\frac{1}{2} \nabla \cdot \mathbf{A}=0, \tag{15}
\end{equation*}
$$

Poincaré group

- Add translations to Lorentz group

$$
\begin{array}{rlr}
P_{\mu} & =-i \partial_{\mu} & \begin{array}{l}
\text { Translation gener } \\
J_{\mu \nu}
\end{array} \\
=L_{\mu \nu}+S_{\mu \nu} & & \text { momentum opera } \\
J_{i} & =\frac{1}{2} \epsilon_{i j k} J_{j k} & \\
K_{i} & =J_{0 i} & \text { orbal angular momen } \\
{\left[P_{\mu}, P_{\nu}\right]} & =0 & \\
{\left[J_{\mu \nu}, P_{\rho}\right]} & =i\left(g_{\mu \rho} P_{\nu}-g_{\nu \rho} P_{\mu}\right) & \\
{\left[J_{\mu \nu}, J_{\kappa \lambda}\right]} & =i\left(J_{\mu \lambda} g_{\nu \kappa}+J_{\nu \kappa} g_{\mu \lambda}-J_{\mu \kappa} g_{\nu \lambda}-J_{\nu \lambda} g_{\mu \kappa}\right)
\end{array}
$$

Poincaré group representations

Bargman, Wigner, 1946

- $P_{\mu} P^{\mu}=-m^{2}$
- Finite mass particles, spin $0,1 / 2,1, \ldots$
- Eigenvalues of $W_{\mu} W^{\mu}: m^{2} s(s+1)$
- State labels: s_{3}, p (continuous 3-momentum)
- $P_{\mu} P^{\mu}=0, W_{\mu} W^{\mu}=0$
- Massless particles, two helicities $\pm s$
- $P_{\mu} P^{\mu}=0, W_{\mu} W^{\mu}>0$
- Massless particles, continous spin
- $P_{\mu} P^{\mu}>0$
- tachyons

$$
\begin{aligned}
P_{\mu} & =-i \partial_{\mu} \\
W^{\mu} & =\frac{1}{2} \epsilon^{\mu \nu \kappa \lambda} P_{\nu} J_{\kappa \lambda}
\end{aligned}
$$

(Paul-Lubanski vector)

Reminder

- Last two B2 lectures (Thursday, Friday) will be at noon as usual

