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"Open book” B2 20

1. (a) Two events in the laboratory frame S are characterized by 4-vectors D =
(ctq,x4) and G = (et 4, x,) where x4 and x, are the corresponding 3-vectors. Write down
the conditions for these events to be connected by space-like and time-like intervals. Can
two events be connected by a null vector? Explain the answer and draw a schematic
(ct, x) diagram indicating all significant features.

Formaninterval: — [TH = DF — GF = (c(tg — ty),%xq — X4) = (ctn, Xn)

Cthd  Timedke: - g

time > space C2 (td L tg)Q > (Xd . Xg)2
Null

trajectory ‘
*(tq — tg)2 = (Xa — Xg)2

Space-likg:
space > time ‘ (Xd . Xg)2 > CQ(td . tg)Q
>

x|

Event G




Ql (a)

Consider two arbitrary 4-vectors whose dot product is zero, i.e. YF#X, = 0. List

— — ' e o Under
what conditions is the inner product zero when the vectors are different combinations
of timelike, spacelike, and null?

Justify your ans-.wers. | 7]
XH = (CUOa X)

Note: no requirement /' 0

that time components Y© = (y 7Y)

are positive!

2y’ =x-y = x| |y|cosd

0)2 2
Ratios make it easy to categorize (CB ) _ ‘Y| 2 0
vectors into null, time-like, space-like ‘X|2 o (y0)2




e @ P 0 < cos?0 < 1
o |X|2 (yO)Q COS Angle between x and y
o . (y0)2 9 -~ Y must be space-like
X is time-like: 1< R = < cos“ <1

| |2 — (any vector orthogonal
Yy to a time-like vector
must be space-like)

0\2
Xisspacedike: 1> R = Y )2 ~ cos2 6 Problem 2.1(v)
|Y‘ - Y can be time-like, space-like, or null
(y0)2 2 |
X is null: 1] =R = | |2 — cos“ 6 S 1 Problem 2.1(vi)
Yy

— Y can be space-like or null

Only null if cosB =1
(same spatial direction)




(b) For a particle of mass m moving along a world-line X* in the inertial reference
] frame S, define the 4-momentum P and 4-acceleration A. Using components of 4-
momentum P calculate the dot product P# P,. Show that if 3-velocity and 3-acceleration

are parallel to each other then the 4 acceleration invariant is A A, = 4%a2. 6] ‘
Xu _ ( Ct(g) xZ(CW Event time and position a function of some parameter
T y
dX"
dXH P’ =m—— = ~ymec
Ptr=m o dr v
- dX*
o - AUF X P—m® —
= T ar T
PHP, = —v*m2c? + v m2u’
2 22 2
sh—ndr o & — —PmPc (1 - 52)
dr dt _ 2 2
— —1MmM C




(b) For a particle of mass m moving along a world-line X* in the inertial reference
frame S, define the 4-momentum P and 4-acceleration A. Using components of 4-
momentum P calculate the dot product P# P,. Show that if 3-velocity and 3-acceleration

are parallel to each other then the 4 acceleration invariant is A#A, = 4%a2. 6]
— Steane 2.5.2
u-a—ua

U" = ~(c, u) ;

y dUH A = @y _
AM =y —— dt

dt
=7(¥e,Ju+1a)

AP A, = (=5 + A2 u? + 295 - a+ 2a?)
= (—°B%a*(1 — B°) + 2v*B%a® + 7°a?)
=7 (=% +29°8% + 1) =%’




(¢) Consider the motion of a particle under a pure (rest mass preserving), inverse
square law force f = ar/r® where « is a constant. Taking into account that f is a central
force, derive the energy conservation equation showing that yme? —a/r is constant. Give

an-example-of stehaforees Give examples of such a force. 5]
Problem 3.3
Pure force (no rest mass change)
dE
——=fv = dE=f dr=(-VV) dr=—dV
L (true for any
B 2 db T dV =0 central potential)
= YMmc
K What is the potential? V=" = f=_VV = _I‘
\ / r3
Therefore E+V is a constant, Examples:
and hence so is - Y mC gravity,

fr electrostatic field




(d) An electron is accelerated from rest across a gap of L = 5m by a constant
electric field of strength 10MVm~!. Find ~ at the other end of the gap. Calculate
how long it takes for the electron to reach the other end of the gap. Sketch ~(t) and
3(t), indicating the significant values. How much will 3 change if the accelerating field

is reduced by 20%7? If, instead of an electron, a proton is accelerated, how will v and 3
change?

7l

Potential across 5m gap is 50 MV

For a single electron:

E

Ey + AE = mc? + 50 MeV

2
M
mc* + 50 eV:1I 50 ~ 08.8

mc? 0.511




Steane 4.2.4 and 4.2.2

(d) An electron is accelerated from rest across a gap of L = 5m by a constant
electric field of strength 10MVm~!. Find ~ at the other end of the gap. Calculate
how long it takes for the electron to reach the other end of the gap. Sketch ~(t) and
3(t), indicating the significant values. How much will 3 change if the accelerating field
is reduced by 20%7? If, instead of an electron, a proton is accelerated, how will v and 3

change? 7]
Need to get x(t) from a known force, f — d_p
so start with definition of 3-force o dt
Electric field, d d
not energy qE — mcﬁ(ﬁv) — mca SlIlh?]
, B
dsinhn = = 0t
mc rapidity
qLEt

. I 1 -
sinhnn=0whent=0 sinh n me But we want 3(t) = tanhn )




Q1 (d)

at ql

=% tanhn = Ao o= —

T T
c/ Bdt = c/ tanh ndt
0 0

E/ozT Y dy
o Jo 1+ y?

L

- [\/1 +a2T? — 1]
o
2 2
(L + E) _ CQTQ — (E) » hyperbola
@7 @7

Note (T,L) always same spacetime interval to (0,-c/a)




bm Plugging in...

C mc? 0.511 MeV
= = = 0.0511
« qF 10 MeV/m o
- 4 1/2
1 L\?
T=>=1({1+22) —1| =~168ns
(8% C

.l Distance vs time




(d) An electron is accelerated from rest across a gap of L = 5m by a constant
electric field of strength 10MVm~!. Find ~ at the other end of the gap. Calculate
how long it takes for the electron to reach the other end of the gap. Sketch ~(t) and
3(t), indicating the significant values. How much will 3 change if the accelerating field
is reduced by 20%7? If, instead of an electron, a proton is accelerated, how will v and 3

change? L

7l

Potential across 5m gap is now 40 MV 40
=1 ~ 79.3
K 0.511

Final velocity £ =~ 0.99992

Proton across same gap, original field magnitude: 50
| vy=14— ~1.05
Opposite charge, mass 938 MeV/c? 938
B~ 0.314




Q2 (a)

invariant? Explain your answer.

2. (a) A photon can be defined by a 4-wavevector K. Write down the components of
this 4-vector and the relationship between them. Considering a photon propagating in
a vacuum, define its phase and group velocities in terms of 4-wavevector K components.
Show that the phase ¢ of the wave is Lorentz invariant. Is the phase velocity vy, Lorentz

(6]

frequency wavenumber

Kt = (\w/c, k§

Components related by phase velocity

k

vp = w/|k|  Vp = WW

In vacuum, Up g

w = |klc

General expressions for group velocity

dw

Really looking for
this form, since
asking for group
V., = C velocity in terms
g of components

Ug




Q2 (a)

2. (a) A photon can be defined by a 4-wavevector K. Write down the components of
this 4-vector and the relationship between them. Considering a photon propagating in
a vacuum, define its phase and group velocities in terms of 4-wavevector K components.
Show that the phase ¢ of the wave is Lorentz invariant. Is the phase velocity vy, Lorentz

invariant? Explain your answer. 6]
wave = 1p(ct, x) ox !X phase
p=k -x—wt
Space-time event e XM= (ct X)
(already know it's o ’ L 4-wave vector
a 4-vector) K* = (w/c, k)

KFX, =—-wt+k-x=¢

Phase is therefore a contraction of two 4-vectors — a scalar Lorentz invariant




Q2 (a)

Steane 6.4
2. (a) A photon can be defined by a 4-wavevector K. Write down the components of
this 4-vector and the relationship between them. Considering a photon propagating in
a vacuum, define its phase and group velocities in terms of 4-wavevector K components.
Show that the phase ¢ of the wave is Lorentz invariant. Is the phase velocity v, Lorentz
invariant? Explain your answer. 6]

Cheap answer: phase velocity is the magnitude of a 3-vector — not a Lorentz invariant

Sometimes not obvious —

- - - f? 4/
Could it be nonetheless a scalar invariant? see end of Steane 8.2.2

* Does it change with a Lorentz transformation?
» Calculate an invariant and see whether phase velocity changes with frame

, :
K'K, = —= +k*

We know w changes with frame,
2 1 1 but neither ¢ nor K'K  do

- Vv, must change with frame.
D It is not Lorentz invariant.

|
&
|
|




Q2 (b)

(b) Can a single photon in a vacuum decay into a single massive particle with mass
m # 0 and another photon? Prove your answer. Show that an electron-positron pair
can be produced during collisions of photons. Find the minimum number of the photons
required and find the minimal energy required for the electron-positron pair to appear,

assuming that the photons participating in the collision have the same frequency. (7]
m
I : .

PH Q Start with 4-momentum conservation...

- p LW pli as

P pr— P* 4 Q
L pltr Y H < Isolate one of
P P = Q the 4-momenta
U H upl D2
P“P, + P"P', —2P*P', = Q"Q',
\ / 2 .2
m-cC
ppl
Both zero PEP K 2 ™ Still true in all frames




Q2 (b)

(b) Can a single photon in a vacuum decay into a single massive particle with mass
m # 0 and another photon? Prove your answer. Show that an electron-positron pair
can be produced during collisions of photons. Find the minimum number of the photons
required and find the minimal energy required for the electron-positron pair to appear,

assuming that the photons participating in the collision have the same frequency. (7]
Choose some frame  PH — (k" k) LE >0
(in any case, both are N !
null vectors e — (k!

ull vectors) P = (K, K)
2.2
m-cC
—— = PMP = kK kK

kk'(cosf —1) <0

But m > 0, so0...no




Q2 (b)

(b) Can a single photon in a vacuum decay into a single massive particle with mass
m # 0 and another photon? Prove your answer. Show that an electron-positron pair
can be produced during collisions of photons. Find the minimum number of the photons
required and find the minimal energy required for the electron-positron pair to appear,
assuming that the photons participating in the collision have the same frequency. (7]

Electron and
positron

Sufficient to prove that it doesn’t work for 1 photon, but can work for 2.

N photons > ¥
Pt =Y (P Pt = (Q1)" + (Q2)"
i Pt —(Q1)" = (Q2)"

PEP, + (Q1)"(Q1)u — 2P"(Q1), = (Q2)"(Q2),

: M — M
If only 1 photon, LHS is 0. - P P,u — 2P (Ql)M
P and Q, are thus orthogonal.

But we know Q, is time-like — P can only be space-like.

Yet P must be a null vector — contradiction.
1 photon cannot produce an electron-positron pair.

Question 1(a)!



Q2 (b)

(b) Can a single photon in a vacuum decay into a single massive particle with mass
m # 0 and another photon? Prove your answer. Show that an electron-positron pair
can be produced|during collisions of photons. Find the minimum number of the photons
required and find the minimal energy required for the electron-positron pair to appear,
assuming that the photons participating in the collision have the same frequency. (7]

minimum number of photons producing e*e” pair in some frame at minimum energy
Is sufficient to show e*e pair can be produced




Q2 (C)

(¢) A free electron, with initial velocity in the z direction vy = (vy,0,0) is injected
into a vacuum vessel. Show and prove which components of the electron 4-momentum
are conserved if inside the vessel there is: (i) a constant electric field (no magnetic
field) E = (E;,0,0) directed along the electron initial velocity; (ii) the magnetic field
B = (0, By, 0) with magnetic field lines perpendicular to the electron initial velocity and
directed along the y coordinate (no electric field).

[5]

(i) Lorentz force, E only:

f

_dp _
=22 =

qE = ¢(E;,0,0)

dpy
2 —gFE,
a1
dpy
Iy
dt
dp.

=0
dt

E2

= |p|”

—- Clearly P, and p, are the conserved components

Energy is not conserved




Q2 (C)

(¢) A free electron, with initial velocity in the z direction vy = (vy,0,0) is injected
into a vacuum vessel. Show and prove which components of the electron 4-momentum
are conserved if inside the vessel there is: (i) a constant electric field (no magnetic
field) E = (E;,0,0) directed along the electron initial velocity; (ii) the magnetic field
B = (0, By, 0) with magnetic field lines perpendicular to the electron initial velocity and
directed along the y coordinate (no electric field). 5]

) . dp
L tz f , B only: - _ _
(ii) Lorentz force, Bonly: ¢ __ E =qgvAB= Q(—’Usza O,UxBy)

P, clearly stays the same,
while p_and p, don’t

Work along path: dW =1 -dx

dW dx

Energy is conserved




Q2 (d)

(d) A plane mirror moves uniformly in the direction of its normal xq in a laboratory
frame S with velocity 5, = v;/c = 0.99. A photon has wavelength A\; = 1 um in the
laboratory stationary frame and 3-wavevector k = (—k;, k,, 0) with |k,| = |k,| in the
frame co-moving with the mirror. Along the z-coordinate it moves in the opposite
direction to the mirror. The photon is reflected by the mirror. Find (in the laboratory
frame) the angle of reflection and the measured wavelength of the reflected photon, As.

7l

(Need to assume system is in a vacuum!)

Go to some frame S’ we understand: where the mirror is at rest.
Incoming photon:  KH — (w/c, _kw’ ]{m O) Frame S’

Outgoing photon Q,u — (CU/C, k:c, kx, O) Q!

(simple reflection): 0 Reflected angle
T

wle=vV2k, <

1

: : Incident angle
(Unfortunately question defines J

unprimed components in S’) K*




Q2 (d)

Boost from S’ (mirror frame) to S (lab frame)

(Check: origin of S’ travels
in +x direction in S)

z* =(z + Bet)

Incoming: v By
K*,u — AMVKV — 57 /y

Can now read off components to get final
energy and reflected angle in lab frame

1
1
v(v2 — B)
(V28 -1)
1
0
(V2 + B)
v(v2B+ 1)
1
0



Q2 (d)

Can now read off components to get final
energy and reflected angle in lab frame

A o 1/E; Ef =k,v(vV2 - )
Az o< 1/ By B =k (V2+ )
V24 5E*

Al:lﬂm\ V2 — 5

2
f+5
~ 0.18 ym




Q2 (d)

Outgoing: v(V2 + B) \
Q*M — Lk ’7(\/56 + 1)
v 1

0

Read off components to get reflected angle in lab frame

. _QF 1
tanf, = — = ~ 0.059
Q" (V28+1)
0 ~ 0.059




Q2 (d)

(d) A plane mirror moves uniformly in the direction of its normal xq in a laboratory
frame S with velocity 5, = v;/c = 0.99. A photon has wavelength A\; = 1 um in the
laboratory stationary frame and 3-wavevector k = (—k;, k,, 0) with |k,| = |k,| in the
frame co-moving with the mirror. Along the z-coordinate it moves in the opposite
direction to the mirror. The photon is reflected by the mirror. Find (in the laboratory
frame) the angle of reflection and the measured wavelength of the reflected photon, As.

7l

Can also check against “standard” results...if you wish...

w; sin @; = w,- sin 6,

tan% _1+p
tan%Z 11—

Using this standard result instead of deriving result:
doesn’t really show much you know about symmetry and relativity




Q3 (a)

3. (a) A particle moves along world-line X# = X#(7) in the inertial reference frame
S. Does special relativity place any bounds on the possible sizes of forces and acceler-
ations for particles of mass m? Justify your answer. Does special relativity place any
bounds on the phase velocity of the electromagnetic wave? Derive an expression for the
photon’s frequency shift during Compton scattering. 6]

For a particle with non-zero mass:

At = —— =v(cy,yu+a) 2
dr
u-a u-a
A2 2 2
= (7 —, Y —5-u+ a)
C
Y - [1, OO) — no upper bound on 4-acceleration
Note also no upper limit on proper acceleration: AH A — CLO

For m=0, speed is always ¢, so acceleration is constrained.




Q3 (a)

3. (a) A particle moves along world-line X# = X*#(7) in the inertial reference frame
S. Does special relativity place any bounds on the possible sizes of forces and acceler-
ations for particles of mass m?7 Justify your answer. Does special relativity place any
bounds on the phase velocity of the electromagnetic wave? Derive an expression for the

(6]

photon’s frequency shift during Compton scattering,
4-force:
apP*
FH = Pt = (FE/c
- (E/c,p)
B 1dE dp
“ I\t at

\ f  3-force

Similarly, no limit on sizes of components of 4-force or 3-force




Q3 (a)

3. (a) A particle moves along world-line X# = X*#(7) in the inertial reference frame
S. Does special relativity place any bounds on the possible sizes of forces and acceler-
ations for particles of mass m? Justify your answer. Does special relativity place any
bounds on the phase velocity of the electromagnetic wave? Derive an expression for the

photon’s frequency shift during Compton scattering. 6]
W
In general, Vy = mk In free space, magnitude is always c.

Phase velocity may be greater than c, e.g., in a wave guide:

Up,z = kﬁ > ¢ with k, < |k|
2

It turns out special relativity
doesn’t limit phase velocity




Q3 (a)

3. (a) A particle moves along world-line X# = X*#(7) in the inertial reference frame
S. Does special relativity place any bounds on the possible sizes of forces and acceler-
ations for particles of mass m? Justify your answer. Does special relativity place any
bounds on the phase velocity of the electromagnetic wave? Derive an expression for the |
' photon’s frequency shift during Compton scattering. 6]

P,LL_|_Q,u _ P/N+Q/N
Q/N — P,Lb_l_Qlu _P/N
—m?c® = —m?c* +2P*Q, — 2P"P’, — 2Q"P’,
0 = PtQ, — PP, — QP

Problem 2.9 pH

Pt = h(w/c, k)
Lab frame: Q" = (mc, 0) )
P = B Je, k)




Q3 (b)

(b) In the laboratory frame S two photons propagate along the z-coordinate,
separated by a distance z¢. Calculate the distance between the photons in frame S’
moving along the z-coordinate with velocity v = (v,,0,0). 3]

You may be tempted to use the usual length contraction — )
but that’s if you know the proper length of the travelling span. 0
In this case, the span is travelling at c.

No rest frame - no proper length!

Go back to the photon worldlines in S:

ct A Ct//,,‘ AH(t
P MY e AP = (cta,z4) = (ct,ct)

BY = (ctp,xp) = (ct,zg + ct)

' (Note this indicates
the distance should

>
o x  actually grow)




Q3 (b)

(b) In the laboratory frame S two photons propagate along the z-coordinate,
separated by a distance z¢. Calculate the distance between the photons in frame S’
moving along the z-coordinate with velocity v = (v,,0,0). 3]

Transform to S’: Ct;l — fy(ctA — ﬁ:le) = W(l — 5)Ct

o, 'y =v(xa — Bcta) =~(1 = B)ct = ct/y
T oc ct’y = y(ct — B(ct + x0))
5’339 = y(xo — (1 — B)ct)
Find t, in terms of ¢, ’Y(CtB — 5(CtB + £EO)) —

when t' (t,)) =t (t,):




Q3 (b)

(b) In the laboratory frame S two photons propagate along the z-coordinate,
separated by a distance z¢. Calculate the distance between the photons in frame S’
moving along the z-coordinate with velocity v = (v,,0,0).

3l

2 (tg) — 24 (ta) = (1 — B)ts +vzo — ¥(1 — B)ta
=y(1 + B)xo
- 1 - B This is the distance in
— 1 _ ﬁxo S’ we're looking for

If | was an Examiner, | might be tempted to ask the candidate to relate
this result to the usual length contraction (though for more than 3 marks!).




Q3 (C)

(¢) An electron and a photon of wavelength A; = 8 um are moving toward each
other along the z-coordinate and at some point the photon is scattered in a head on
collision. Show that the wavelength of the scattered photon can be estimated as Ay =

A1/(4+?). Calculate the wavelength of the scattered photon when the initial velocity of
the electron in the laboratory frame is 3, = 0.999. 6]

[Hint: Use the fact that the energies of the photons are much smaller than the rest
energy of the electron.]

“Inverse Compton scattering”: an electron hits a “soft” photon, giving energy to the photon

“Head on”:
mostly linear, © Qr
small angles

Q" = (E/C,p)
P — (k, —k)
P/M _ (k/, k/)

0= P"Q, — P*P', —Q"P',




Q3 (C)

(¢) An electron and a photon of wavelength A; = 8 um are moving toward each
other along the z-coordinate and at some point the photon is scattered in a head on
collision. Show that the wavelength of the scattered photon can be estimated as Ay ~

A1/(4+?). Calculate the wavelength of the scattered photon when the initial velocity of
the electron in the laboratory frame is 5, = 0.999.

[Hint: Use the fact that the energies of the photons are much smaller than the rest
energy of the electron.]

(6]

0= P*Q, — P*P', — Q"P',

1 1
B=J1- =l
= —k(£+p)+ K (£ —p+2k) 2 2y
E+p k(14 ) E+pc  1+8
~E b= e o Rk =k
= —Dp+2k — 5 T 5 E —pc 1-p
VY
kc 1-p A1
o= Ao R\ ~ —= ~ 0.004 pm
E<<1 2 11_|_5 4,72 H




Q3 (d)

(d) In the laboratory frame S, a plane monochromatic electromagnetic wave with
angular frequency w and 3-wavevector k = (k;,0,0) propagates in vacuum. Write down
a possible form of the 4-vector potential A. Use this 4-vector potential A to find the
components of electric and magnetic fields E and B. 4]

KH* = (w/c’ k.0, 0) » For an EM wave, A is perpendicular to k
* Use gauge invariance to choose simple form
AP = (@/c, A, Ay, Az)

AP — AF 4 OFy

> No charges or currents — Coulomb gauge
V-A=0
‘ > Can also fix ¢ to be constant over time

b =0

A* = (0,0, Ag cos(wt — k,x),0)




Q3 (d)

(d) In the laboratory frame S, a plane monochromatic electromagnetic wave with
angular frequency w and 3-wavevector k = (k;,0,0) propagates in vacuum. Write down
a possible form of the 4-vector potential A. Use this 4-vector potential A to find the

components of electric and magnetic fields E and B. 4]
A* = (0,0, Ap cos(wt — kzx),0)
E=-V¢-— (?a_? = —Apwsin(wt — k,x)y
B=VAA = Apk, sin(wt — k,x)z 5
Note that A and E are parallel to one another, k

B perpendicular to them, AE
and all perpendicular to k ’




Q3 (e)

(e) An ultra-relativistic electron propagates with constant velocity v = (0,0, v,)
along the z-axis through a periodic field. The field is defined in the laboratory frame S by
a 4-vector potential with only one non-vanishing temporal component A* = (%, 0,0,0)
where ¢ = ¢ cos(kyz), ky = 2m/d and d is the period of the field. Find the fields E and
B in the labnratnry frame and in the rest frame of the electron. qu—ﬂre—ﬁe}d—ehw&%d

- 2 Compare
the field observed in the rest frame of the electron to that of an electromagnetic wave. 6]

Lab frame

E=-Vé-— %—‘i‘ = ok sin(kyz)2

Electron frame

B=VAA=0 E/” — EH = Qoky Sin(kuz)
\ E/J_:’Y(EJ_—I—V/\B):O
B’ =B =0

What does the electron “see”? ! 2\ __
Need to use local coordinates B 1 = V(BJ- — VA E/C ) =0




Q3 (e)

(e) An ultra-relativistic electron propagates with constant velocity v = (0,0, v,)
along the z-axis through a periodic field. The field is defined in the laboratory frame S by
a 4-vector potential with only one non-vanishing temporal component A* = (%, 0,0,0)
where ¢ = ¢ cos(kyz), ky = 2m/d and d is the period of the field. Find the fields E and
B in the labnratnry frame and in the rest frame of the electron. Gaﬂ—‘&he—ﬁe}d—ahw&%d

2 Compare

the field observed in the rest frame of the electron to that of an electromagnetic wave. 6]
. / /
Use local coordinates: /Z - 7(z\+ Uzt )
/ . A zero because it's the electron rest frame
E' = ¢oky sin(k,2)z ( )

— dak. sin(~o. k.. t)z « Similar to EM wave:
¢O v (7 < ) * electron experiences an oscillating E field
* Contrast:

* E parallel to motion, not perpendicular
Frequency “blue shifted” . N(?Bfield PEIP

* no momentum transfer (ExB)




— : e — Compare
and contrast the Lorentz transformations of vector fields describing momentum, force,
current density, and electric and magnetic fields. Explain why the electric field 3-vector
is not the space part of a Lorentz 4-vector. 3]

Lorentz transformation can be represented by a 4x4 matrix AP U

(Linear transformation)
I 1%
P" =A* P

Momentum, force, and current density have 4-vector analogues

Pt = mU" = ym(c,v) = (yme, p)
y dPH*
PP = m? Longitudinal components are modified along with time.

Transverse components are unchanged.

J' = (pc,j)




and contrast the Lorentz transformations of vector fields describing moment
current density, and electric and magnetic fields. Explain why the electric field 3-vector
is not the space part of a Lorentz 4-vector.

— Compare
um, force,

3]

Note that 3-momentum is part of 4-momentum,
but 3-force isn’t (by itself)

Transformation of 4-force leads to
Lorentz transformation of 3-force:

/ T By dE
fij ==

c dt

p = ymv
dp
f— =
i@ 3»
v dE
FH = L=
dt

Both longitudinal and transverse
components modified




— Compare

and contrast the Lorentz transformations of vector ﬁelds descrlbmg momentum, force,
current density, and electric and magnetic fields. Explain why the electric field 3-vector
is not the space part of a Lorentz 4-vector.

3]

Electric and magnetic fields:

H—Em —
| =B

v AE
| =(B. - 57

Apparently opposite 4-vector behavior:
longitudinal components unchanged.
Transverse components look “boosted”.
(Compare with 4-vector transformation)

ct’ = ~(ct — )
' =v(x — Bet)

E and B transform as part of a
rank-2 antisymmetric field tensor

F'™ = AP AV g FOP




- I.-I # = r__ﬂ'“- I.-I 3 I.-I -
efthis4-—veetor? Show that, and explain why, the Lorentz force law is invariant with
respect to Lorentz transformations. 4]

f=q(E+vAB)

Tensor argument: show that it's the space part of a tensor equation FH = qF U U

Remember
use metric to

/ 0 E;/c E,/c E./c \ “M”m“!\f‘—{:\

. | —Ei/c 0 B, —-B B Vo
F,u B o y/C _Bz 0 B;cy Uy—/y ’Uy
\ -E./c B, -B. 0 |/ \ v, )

Seems pretty obvious except for this




SIm— T 3 S
etf-this4—veetor? Show that, and explain why, the Lc-rentz force law is invariant with
respect to Lorentz transfﬂrmatmns 4]

Pt = qF*U, = (vq(v-E)/c,vq(E +v AB))

\
\

Recall that 3-force isn’t identical \\
to the space part of the 4-force ////,,,;:\*f — q(E _|_ V /\ B)
Y dE N
Ft = f
c dt’ [

Lorentz transformation - tensor equation unchanged - 3-vector (derived) equation unchanged

You can of course also show this using the Lorentz transformations of E and B directly




of electric and (hypothetical) magnetic charge densities?

2 In light of the Maxwell

equations and the Lorentz fDI‘EE 1aw show that the electric and magnetic fields behave
differently under the parity transformation. What does this imply about the behaviour

4]

Under space inversion

E— —E

X — —X ﬁ

f=q¢qE+vAB

V — —V
f — —f \\\\>B—+B

V — -V

0B
Can also see differencein V A K 4+ —

ot

0




2 In light of the Maxwell

equations and the Lorentz fDI‘EE 1aw show that the electric and magnetic fields behave
differently under the parity transformation. What does this imply about the behaviour

of electric and (hypothetical) magnetic charge densities?

4]

V-E=p/eg ) 0 — P
V-B=0 = V:-Bxp,
B—-B

Electric charge density
IS a normal scalar

‘ Pm —7 —Pm

V - -V

Magnetic charge density
IS a pseudo-scalar




Q4 (d)

(d) Frame S’ moves with a constant 3-velocity v relative to the laboratory frame
S. In S, the components of the electric field and the magnetic field are E = (E,, E,, E,)
and B = (B, By, B;). Write down the form of the transformed electric and magnetic
field in the frame S”. 4]

/I
Components <: | — B|| 6 — M
parallel to v c
1= E

vAE Y =

< L =7BL-—5) ViI=5

' =v9(EL +vAB)

Components
perpendicular to

Remember to define all the terms!




Q4 (e)

(e) An isolated parallel plate capacitor is at rest in the laboratory frame. The
plates of the capacitors are parallel to the yz-plane in the laboratory frame S. The
distance between the plates in this frame is zg = d. The capacitor’s proper dimensions
are fixed. An electron is launched into the gap between the plates from the surface of
the plate with negative charge. The electron has zero initial velocity. The electric field
in the capacitor between the plates is equal 100 MV m~! and the distance between the
plates is 0.1m. (i) Find the electron energy and velocity at the second plate of the
capacitor; (ii) Is it possible to prevent the electron from hitting the positive plate of the
capacitor by applying magnetic field. Explain the answer; (iii) Suggest the direction of
the magnetic field required to prevent the electron beam from reaching the second plate;
(iv) Find the strength of the magnetic field needed to prevent the electron reaching the
second plate; (v) Describe and sketch the electron trajectory in the combined fields. [10]

y

. — 10.511 MeV
&, e v = E/mc® ~ 20.569
o

E =mc® + AE = 0.511 MeV + (100 MV /m)(0.1 m)e

Pretty much
B = 0.99882 like Q1(d)




Q4 (e)

(1) Is it possible to prevent the electron from hitting the positive plate of
the capacitor by applying magnetic field. Explain the answer.

f=q(E+vAB)

XTZ> /
i i i - Early v in +x direction
Ue-

y

B field along y or z directions would
deflect and bend trajectory back

(i) Suggest the direction of the magnetic field required to prevent
the electron beam from reaching the second plate.

See above. Any direction in yz plane would work (symmetric around x axis).




Q4 (e) (IV)

Find the strength of the magnetic field needed to prevent the
electron reaching the second plate.

 Uniform B field — circular motion E2
» In that frame S’, B#0 and E=0 FHYE  — B? — —
. Field invariant —————— pv 2
> Therefore |B| > |E|/c in any frame
S’ velocity in S (not electron v!) Choose )
\?\'\\‘:\if;;\\\\\ B — B y

~~__

0=F, = v (E. funB) /
0=—Ex+u.BzAy)

E

Uy = — E ™ g5 speed determined by B strength




Q4 (e) (IV)

Find the strength of the magnetic field needed to prevent the
electron reaching the second plate.

Find B’ strength in frame with no E E=—-Fkx

B = By
B =E=0 y

u/\) B




Q4 (e) (v

Find the strength of the magnetic field needed to prevent the
electron reaching the second plate.

Note that this is for the dV
electron, not the frame A . . . / ]/ o .
7m At — —6(513,y,2’)/\(0,B 70) =eb (2707 —CE)
eB’ d A

T = x(t) = 5(1 — cos wt) S T x

v’m —— d (max)
d
s eB’ y z(t) = 5 sin wt /x

,y/m | |
de B’
eB’ 2(t=0)=Bc= — \ﬂ
W = ; 2’)/ T ©
Ym
I é B’ . .
How do we: P = 7 mc — 9 € Larmor radius for radius d/2
calculate this?




Q4 (e) (v

Find the strength of the magnetic field needed to prevent the
electron reaching the second plate.

Electron initially at restin S d , de B
~ initial momentum p in S’ is from boost D= —eB' =

B = Bus =T 2 2V
—1/2 r
E E? deB E?

1/2
! 7
- — (11— — (1=
pryme cB (1 6232) e 2 ( CQBQ>

E? 2mcE 6
- B2 _ - Note £ _ 100x10°V/m _ 1
C de c ¢ 3x108m/s 3
2 2(0.511 x 106 V
B~035T A 1(?n5><3 T m)/s> =00t
~ M (minimum) '




Q4 (e) (V)

Describe and sketch the electron trajectory in the combined fields.

S'(no E o
field)

awm

Z [m] [

y [m]




Mock exam ques

* NO previous exam gquestions, so we’ll pretend

— Hopefully this will provide further illustration of the
concepts

* Let X =20,
- 0=l identity matrix, g, 2x2 Pauli matrices

- X" are components of a 4-vector

- Derive an expression relating the determinant of X
to the length of x



Mock exam ques

* Derive an expression relating the determinant
of X to the length of x

_on. [tttz x—1y
A =20 <x+iy ct — 2

det(z"0,) = (ct + 2)(ct — 2) — (z —iy)(x + 1y)

2

= Pt — 22 —x? — = —atx,

X Is another representation of a 4-vector,
as a 2x2 matrix rather than a column vector



Mock exam gues

* Let M be an arbitrary 2x2 complex matrix with
det(M) =1
» Define the transformed matrix X' = MXM!

* Show that the length of the corresponding 4-
vector Is unchanged

det X' = (det M)(det X)(det MT) = det X

= (@) (a'), = 2"z,



Mock exam que:

* Show that the set of M matrices forms a group
under matrix multiplication

~ Closure: det(M;Ms) = (det My)(det M) =1

— Associativity: same as for matrix multiplication
- ldentity element: M=l (same as for matrices)

- Inverse: Sy L
det(M ™) = vy 1
* |n fact the group Is the “Special Linear” group

SL(2,c)



Mock exam ques

 How many degrees of freedom does M have?
— 8 components (2 per element)
- 2 constraints — 6 real parameters

* |nterpretation?

- Transformation leaves length of a 4-vector
unchanged, but changes its components
— Lorentz transformation

— Full Lorentz group also has 6 real parameters:
3 for rotations, 3 for boosts



Mock exam gues

* Now let’'s look at the subset of matrices which
are unitary. You can assume it's a subgroup.

* Show that elements of the unitary subgroup
leaves the time component of the 4-vector
unchanged

UXU" = Usto, Ut
— UL2U" —I—U:cjajUT
::1:01’4—U:L’jcijT



Mock exam gues

 How many degrees of freedom does U have?
— Unitarity condition — 4 constraints

- But remember also that we required detU=1
— 3 real parameters

* |nterpretation?

- U only affects spatial components, but leaves
length unchanged - 3D rotations
(also only 3 real angle parameters)



Mock exam gues

e A further comment on SU(2), the group of U:
one also finds that the Pauli matrices are
related to the generators of SU(2)

* Exponentiation, e.q.:

_q _ 9 cos ¢ —jsin ¢

Rl(e) — e 0 J1 _ e i0o1/2 _ 29 02

—1 S111 B) COS B)

* This Is just a spin-1/2 rep: need 4 rotation!
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